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Abstract. I owe much of my understanding of the difference between synthetic and analytic thinking in 
mathematics to my reading of Michael Otte's papers and the conversations we had with him within the 
BACOMET group. One of the first sources of inspiration for me has been his work on arithmetic and 
geometric thinking. In the paper I shall outline the consequences of the distinction for analyzing processes 
of mathematics teaching and learning in my own research. I shall further use this distinction to look criti
cally upon the recent trend in mathematics education of considering mathematics as a kind of "discursive 
practice." 
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1. INTRODUCTION 

This paper, dedicated to Michael Otte, is about practical and theoretical thinking as 
complementary epistemological categories and the use of this distinction in mathe
matics education. The distinction is presented as one among many "false dichoto
mies" that are common in the domain. The dichotomies are first discussed in the 
light of Michael Otte's papers on complementarity. An alternative view is then pro
posed in terms of couples of epistemological obstacles. A possible use of the practi
cal/theoretical distinction in mathematics education is illustrated by means of a 
thought experiment about a teacher educator planning to discuss the use of manipu
latives with his student teachers. The thought experiment points to the complexity of 
the system of objects of thought in mathematics education and the extreme fragility, 
in practice, of the distinction between theoretical and practical thinking. It also high
lights the crucial role that epistemological analyses, such as those offered in Michael 
Otte's papers, play for research in mathematics education. 

In his comments on one of my papers about epistemological obstacles (Sierpin-
ska 1996), Michael Otte was saying that, where I saw a couple of obstacles, he could 
see only one, namely 

... the problem that in order to understand mathematics one has to take into account [the 
fact] that mathematics is simultaneously meta-mathematics ... [T]he problem Ues in an 
empiricist or concrete epistemology [that] does not think of mathematical objects in re
lational or structural terms. ... [M]athematics is difficult for the learner not because of 
the technical complications of its method, but because of the specificity of its objects. 
(Letter dated 24.1.1994) 
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He went on to say that he has been busy his entire didactical career with this one 
problem [the problem of sources of difficulties in mathematics learning] and with 
the question of the nature of mathematical objects and concepts. In my own re
search, I have tried to engage more directly with the practice of teaching, with de
signing and experimenting didactic sequences. Somehow, I always ended up dis
cussing these same problems. They are very powerful attractors indeed in the dy
namics of research in mathematics education. 

2. EPISTEMOLOGICAL OPPOSITES 

Theory of mathematics education is replete with pairs of opposite categories of 
knowing and thinking such as the empiricist-structural distinction mentioned above, 
intuition versus formal knowledge, instrumental versus relational, or operational 
versus structural understanding. In my research I first resisted using such global 
categories, explaining both the meaning of particular mathematical concepts and 
students' difficulties by the existence of "epistemological obstacles" specific to con
crete mathematical concepts. But, as I went on in my research, I realized (and thus 
agreed with Michael) that many obstacles were related not to specific concepts but 
to mathematics in general. And thus I ended up with, first, three categories of think
ing in linear algebra: synthetic-geometric, analytic-arithmetic and analytic-
structural, and then attributing students' difficulties in linear algebra to their ten
dency to practical as opposed to theoretical thinking (Sierpinska et al. 1997; Sierpin-
ska 2000; Sierpinska & Nnadozie 2001). 

It is tempting to think that these categories refer to some ontological reality; that 
there exists an identifiable brain activity such as, for example, theoretical thinking, 
with no trace whatsoever of its opposite, namely practical thinking. But, as Michael 
Otte has argued in Otte (1990b), these distinctions should be regarded as epistemo-
logical, not ontological distinctions. They are our simplified ways of knowing hu
man cognitive activity in mathematics; they are not kinds of human cognitive activ
ity. 

I have argued that, whenever we see mathematical proof as involving only a mechanical 
aspect, we are driven to see that it involves, as well, an intuitive one. And whenever we 
are tempted to see mathematical proof as involving only a solitary aspect, we are driven 
to seeing that it is also a social matter. And whenever we are tempted to see a mathe
matical argument of the kind found in proof, namely a chain of tautologies or of equali
ties, as merely, or perhaps the ideal of, Hteral expression, we are forced to see that it is, 
in fact, essentially metaphorical. (Otte 1990b) 

This is why Otte preferred to speak of "complementarity" (p and not p) rather than 
of dichotomy (p or not p). 

3. COMPLEMENTARITY 

In his philosophical considerations on mathematics and its teaching, Otte has ex
plored in depth the idea of complementarity of object and method in science (Otte 
1990a), or, broadly speaking, the idea that "every scientific explanation simultane
ously contains a meta-communication, i. e. it represents, in an exemplary way, an 
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answer to the question what it means to explain an object or a fact at a certain his
torical point in time." This notion of complementarity comprises issues such as rela
tionships between intuition (which focuses on discovering the object of study) and 
logic (whose problem is to systematize methods of validation of the findings), im
mediate perception (synthetic thinking) and discursive procedures (analytic think
ing), or between theoretical representation and technology of measurement or com
putational technique. These issues constitute the philosophical underpinnings of de
bates on the teaching of mathematics focusing on the problems of striking a balance 
between "theory" and "practice," knowing why and knowing how, letting the stu
dents engage in free explorations and express themselves as they like and teaching 
them the "right" mathematical discourse and standards of methodological rigor. 

Complementarity of these categories could be expressed also in terms of episte-
mological obstacles. An epistemological obstacle is a way of thinking that stands in 
the way of another way of thinking, but it would not exist (as an obstacle) without 
this other way of thinking. Thus it does not make sense to speak of single epistemo
logical obstacles, but only of their pairs. The epistemological categories mentioned 
above can be seen as pairs of epistemological obstacles in the philosophy of knowl
edge. Intuition and formal knowledge is such a pair of obstacles, for, without intui
tion, formalism would have nothing to doubt; there would be no need to formalize in 
order to confirm or remove the doubt; on the other hand, without formalism, intui
tion would remain in a state of either permanent self-satisfaction or permanent 
doubt. 

Similarly, theoretical and practical thinking can be viewed as a pair of epistemo
logical obstacles. Thinking is not either theoretical or practical but arises in a tension 
between the two. The "practical sense" decisions are acts of discarding all but one 
possible course of action; but this decision would not be necessary if these possible 
courses of action were not available to the mind. They are available as a result of 
hypothetical, theoretical thoughts, however primitive, swift and unconscious. On the 
other hand, the mind would not engage in thinking about the possible courses of ac
tion and their outcomes if no action were envisaged at all. As Otte was saying, in his 
polemic with Piaget's concept of empirical abstraction, which he considered "too 
primitive" by being completely separated from reflective abstraction (Otte 1990a): 

One has to emphasize that theoretical consciousness demands to conceive the objects 
and phenomena of reaUty not just in the form of knowledge and contemplation but as 
parts of activity also ... [T]he relationship between the conceptual-reflective and the al
gorithmic-logical elements of mental activity is only conceivable as an interaction of 
two poles of a relationship the basis of which is the activity. (Otte 1990a) 

"This is all very well" - a mathematics teacher might say at this point - "but what 
difference does it make for my teaching practice, whether I see these pairs of catego
ries as dichotomies or as complementary couples?" 
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4. THE QUESTION OF RELEVANCE OF EPISTEMOLOGICAL DISTINC
TIONS FOR MATHEMATICS EDUCATION 

Saying that mathematical thinking is, at the same time, intuitive, formal, practical, 
and theoretical is anything but an astounding discovery. Of course, the realization of 
the epistemological complementarity discussed above might save one the inevitable 
failure of organizing one's teaching on the basis of the assumption that, say, "real" 
mathematical thinking is formal and theoretical, and that the intuitive and practical 
aspects of knowledge construction are only the necessary contingency of some 
shameful "didactic transposition" from scholarly research knowledge to the social 
and cultural institution of teaching mathematics to masses of students. It might save 
one, as well, from trying to "derive" theoretical concepts from concrete, "hands-on" 
experience, based on the belief that the meaning of these concepts is somehow al
ready there in the empirical relations. Steinbring has convincingly demonstrated the 
ineffectiveness of such approaches, using the theory of epistemological triangle and 
detailed analyses of classroom interactions (e. g. Steinbring 1991, 1993). 

But the mere realization of complementarity cannot help mathematics educators 
in understanding what exactly is difficult in learning this or that mathematical idea 
in a particular teaching/learning situation, never mind helping them in planning and 
organizing such situations. In each case, the mathematics educator must "roll up his 
sleeves" and do the epistemological and didactic analysis almost from scratch. This 
is no trivial task, as can be seen from the above-mentioned papers by Steinbring. 

The mathematics educator must also be more specific in describing the epistemo
logical categories if he^ intends to use them in analyzing particular teaching situa
tions; he needs to "operationalize" them. With respect to the theoretical/ practical 
distinction, for example, saying that learning mathematics is difficult because it re
quires theoretical thinking is almost a tautology. In the next section I present a char
acterization of the theoretical/practical distinction, which we developed for the pur
poses of our research on linear algebra teaching and learning (Sierpinska et al. 
2002). 

5. A CHARACTERIZATION OF THEORETICAL/PRACTICAL THINKING 

Michael Otte once told me that the difference between synthetic and analytic think
ing is that the former holds a direct relationship with its object while in the latter this 
relationship is mediated by one or more sign systems. The same can be said of the 
difference between practical and theoretical thinking, since it is normally assumed 
that theoretical thinking is analytical. 

Thus what is theoretical or practical is not thinking as such but the relationship 
between thinking and its object. It makes sense to conceive of this object as some 
kind of action, actual or imagined, present or past, performed or planned, since both 
theory and practice are normally related to purposeful action. "Action," here, could 
mean proving a mathematical statement as well as carving squares from a plank of 
wood. Practical thinking could be viewed as thinking-in-action, whereby changes in 
thought directly influence changes in action. Thus, the relationship between thinking 
and this very action of thinking is practical. If a philosopher ponders a theoretical 
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question, the relation of his thinking to this very activity of thinking is necessarily 
practical; he is not thinking about his thinking. He is just thinking; he is engaged in 
the practice of philosophizing. 

For theoretical thinking to even begin, the thought and its object must belong to 
different planes of action (Figure 1). Thinking-m-action must become thinking-
about'diction. The moment the philosopher reflects back on his thinking, verifying if 
it is well founded, eoretical. 

plane of action 

plane of action 2 

plane of action 1 

t 

0(t) 
Practical relationship 
between thought t and its 
object 0 ( t ) 

t 

Theoretical relationship 
between thought t and its 
object 0 ( t ) 
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Figure 1. Relations between thought and its object in theoretical and practical thinking. 

Let me illustrate this idea with one more example. Imagine a student who solves an 
equation and then substitutes the obtained result into the original equation. In the 
phase of solving the equation, the student is engaged in the practice of solving equa
tions: his thinking and his activity of processing the algebraic expression belong to 
the same plane of activity. In the phase of substitution, the student may be taking a 
step back from his previous activity, which would now become the object of his 
thinking. He may be verifying if the result he obtained indeed satisfies the equation. 
In this case, we could say that the student is "engaged in theoretical thinking" or, 
more precisely, that the relationship between his thinking and its object is theoreti
cal. But the student may also do the substitution as part of what he understands as 
the school task of "solving an equation," without viewing it as a means of control of 
the result obtained in the first phase. It is well known that many students indeed hold 
this conception and are not bothered if they obtain a contradiction through substitu
tion. These students think practically in both phases of the task. 

Obviously, one cannot assume that belonging to different planes of action is a 
sufficient condition for the relation between thought and its object to be theoretical. 
Musing about days gone by, day-dreaming, or rotating three-dimensional shapes in 
one's mind would then count as theoretical thinking and this is not what we intend 
to mean. More restrictions on the relationship between thought and its object are 
needed for a satisfactory characterization of theoretical thinking. 

The most obvious characteristic of what we normally call theoretical thinking is 
that its ultimate purpose is the production of theories or conceptual systems. 

One consequence of this assumption is that theoretical thinking is not about 
techniques or procedures for well-defined actions, although these might be derived 
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from or explained by the theories. Theoretical thinking is reflective in that it does 
not take such techniques or procedures for granted but considers them always open 
to questioning and change. In this sense, therefore, theoretical thinking is opposed to 
mythical thinking, in which knowledge is considered as "natural" or "sacred" and 
therefore in no need for justification (Steinbring 1991). 

Another consequence is that theoretical thinking is systemic, i. e. its objects are 
not particular actions but systems of relations between actions, and systems of rela
tions between these relations. As Otte was saying, 

The history of science may be briefly sketched as a transition from thinking about ob
jects to relational thinking. Theoretical thinking, accordingly, is not concerned with 
concrete objects, nor with intrinsic properties of such objects, and theoretical terms, in 
particular, are not just names of objects. Rather, science is concerned with the relation
ships between objects or phenomena. As the historical transition took place, it became 
increasingly obvious that a theoretical term will receive its soUd content, its clear form, 
only from its relationship to other concepts. (Otte 1990a) 

The systemic character of theoretical thinking entails sensitivity to contradictions', 
otherwise, conceptual systems would collapse. Vygotsky has particularly stressed 
this characteristic of scientific, as opposed to everyday concepts (Vygotsky 1987, 
234). Actually, the very concept of contradiction makes no sense outside a system of 
concepts. Contradiction is a type of logical relationship between propositions; there 
can be no contradiction between events occurring in space and time; their meanings 
change with the context in which take place. Contradiction thus requires stability of 
meanings in the frame of reasoning. This can be achieved by definitions and other 
agreed upon characterizations. 

The combination of reflective and systemic thinking implies that theories do not 
grow by simple addition of new concepts, but that new developments may cause a 
restructuring of the whole system. The system is always reflected upon as a whole. 
This feature of theoretical thinking is sometimes called "reflexivity'' (Steinbring 
1991). 

Concern with non-contradiction implies that attention is being paid to problems 
of validation, both at the level of the systems themselves and at the meta-level, i. e. 
at the level of methodology. Theoretical thinking asks not only. Is this statement 
true? but also What is the validity of our methods of verifying that it is true? Thus 
theoretical thinking always takes a distance towards its own results. 

Thinking within conceptual systems can only produce conditional truths; it is hy
pothetical thinking. Theoretical thinking is concerned with problems of the suffi
cient, necessary, essential, complete character of conditions of truth in each case. 

As mentioned, the assumption of belonging to different planes of action already 
implies that theoretical relationship between thought and its object is analytic, i. e. 
mediated by systems of signs. But, if we assume that the results of theoretical think
ing are conceptual systems or theories, which have to be formulated in some coher
ent terminology and symbolic notation, then we must also require that theoretical 
thinking have an analytic relationship with sign systems themselves. Theoretical 
thinking not only is mediated by systems of signs; it takes systems of signs as an ob
ject of reflection and invention. 
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In brief, theoretical thinking is thinking where thought and its object belong to 
distinct planes of action, and whose purpose is the production of internally coherent 
conceptual systems, based on specially created systems of signs. Theoretical think
ing is, therefore, reflective, systemic and analytic. 

I have argued elsewhere (Sierpinska et al. 2002) how highly relevant, a priori, 
are the above features of theoretical thinking in understanding linear algebra, and 
how irrelevant they can be for high achievement in linear algebra courses. In this 
paper, I will focus on the complementarity between theoretical and practical think
ing in actions related to teaching and learning of mathematics. 

6. A THOUGHT EXPERIMENT: 
THE INTERPLAY OF THEORETICAL AND PRACTICAL THINKING 

IN A TEACHER EDUCATOR'S PLANNING OF AN ACTIVITY 
ON THE USE OF MANIPULATIVES WITH STUDENT-TEACHERS 

Thinking in and about mathematics education involves simultaneously several 
planes of action. In particular, the object of study for a mathematics education re
searcher may comprise several levels of recursion of the act of "theoretical reflection 
on practice." For example, when a researcher reflects theoretically on the practice of 
a teacher educator, he may use his practical experience of being a teacher educator, a 
schoolteacher, a learner and doer of mathematics, and a researcher knowledgeable of 
the theories and methodologies of his field. He may entertain, with each of these 
planes of action, a practical or a theoretical relationship. 

In any concrete activity of reflection, these relationships are closely intertwined 
and dependent on each other. Their identification and categorization is possible in a 
methodological analysis, but not in actual fact. This is what I would like to show in 
the following thought experiment. 

Suppose a researcher reflects on the work of a teacher educator preparing an ac
tivity for his student teachers aimed at a reflection on the use of manipulatives in 
mathematics teaching, on the example of the learning, by high school students, the 
meaning of the Pythagorean theorem. In the first section (6.1), the narrator is the hy
pothetical teacher educator. In the second (6.2), a researcher interprets and analyzes 
the actions of the educator, focusing on the interplay between his theoretical and 
practical thinking. 

6.1 Teacher educator prepares a class on the use of manipulatives 

[1] Suppose I am a teacher educator preparing a session with student teachers on 
the problem of using manipulatives in the teaching of mathematics. I want to 
convince them that mathematics is not there, in the manipulatives, but, at best, 
in the interplay between the practical and theoretical tasks based on actions 
with the manipulatives. 

[2] Let me prepare for a worst-case scenario. Suppose the pre-service teachers in 
my class want a straightforward judgment such as, "manipulatives are good" 
(or bad). Also, suppose they expect that teaching with manipulatives is easy: 
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one just goes into the classroom with a bag of manipulatives, lets the students 
play with the them, and the students thus "naturally" discover the mathemati
cal concept planned for this particular lesson. 

[3] What situation could help my students realize that there is no simple recipe 
and that it all depends on the manipulatives, what you want to teach with them 
and how you set up the didactic situation? I know that just telling teachers "it 
depends" will not help them understand the complexity of the issue. I need to 
engage them in planning a concrete lesson with concrete manipulatives. Sup
pose I take the wooden puzzle that I got at the last NCTM^ meeting and ask 
student teachers to imagine if and how they could use it to introduce the Py
thagorean theorem. 

Figures 2a & 2b. Two ways of arranging the pieces of the puzzle. 

[4] This, I feel, is bound to show them that while manipulatives may embody 
mathematical ideas for those who already have them in their minds, they are 
not necessarily helpful in bringing these ideas to the minds of those who 
hadn't seen them before. 
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[5] The puzzle has 4 pieces, which can be arranged into shapes like those in Fig
ure 2. 

[6] This pair of shapes brings to mind the "puzzled" proof of the Pythagorean 
theorem, as in Figure 3. 

Angle ABC = 9U* 

Figure 3: The idea of the popular ''puzzled' proof of the Pythagorean theorem. 

[7] The student teachers will probably recognize the Pythagorean theorem in the 
puzzle, and they will take it for granted that their students will "see" it as well, 
in spite of never having heard of the theorem before. 

[8] I will show them that this need not necessarily be so. I will invite them to 
imagine, step by step, what may happen if they bring the puzzle to the class
room and ask the students to first play with it freely and then to construct 
squares. I will ask them to assume that students in the classroom are mostly 
practically minded. I don't know what scenarios they may come up with, but 
let me do this exercise myself, so I can be better prepared for arguing with 
their claims. 

[9] Most students want to make nice looking material objects. They do not think 
of a shape first and then try to construct it, but just move the pieces around, 
trying in which ways they best "fit" with each other. Their decisions about 
when to stop and consider the shape done are based on visual and tactile clues 
and their spontaneous esthetic feelings. These may be explained by their pre
vious encounters with cultural artifacts, but not by some explicit esthetic prin
ciples such as "symmetry," "compactness," or "balance" (Figure 4). 

[10] If the students only want to play with the puzzle in this rather random fashion, 
they will never be brought anywhere close to the Pythagorean theorem. Let me 
now think of the next-to-worst scenario. The students start noticing some rela
tions between the pieces. They might discover that the four pieces of the 



126 A. SlERPlNSKA 

Figure 4. Shapes that could be obtained by students through free play with the puzzle. 

puzzle are not identical. The lengths of their sides differ a little. Especially one 
piece is quite off the shape of the other three. Also the angles that look like 
right angles are not exactly so, because, when the pieces are put side by side, 
they do not form a straight line exacdy (Figure 5). 

Figure 5. The pieces of the puzzle are not all identical. 

[11] Students may decide to ignore the differences (as technical errors of the person 
who cut the pieces). Suppose now that some students are technically minded or 
have been inspired by their recent experiences in the woodwork class. Some of 
them may start thinking about the technology of producing the puzzle. This 
may lead them to viewing each puzzle as made from a single square piece of 
wood (like in Figure 2a) cut along two perpendicular lines passing through the 
center of the square, constructed as the intersection of its diagonals. Some stu-
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dents may measure the angles at which the inner segments fall on the sides of 
the square, find that they are approximately 60° and 120°, and include these 
measures in their definition of the puzzle. Other students may see these angles 
as arbitrary and only constrained by the requirement of producing a non-trivial 
puzzle, i. e. one made of four quadrilaterals with unequal sides and not four 
squares or four right-angled triangles (Figure 6). 

Figures 6a, 6b, 6c. Two trivial and one non-trivial puzzle. 

[12] These technological concerns of the students could perhaps be considered as 
the most "natural" outcome of playing with the puzzle in a high school 
mathematics class. This situation could give the teacher an opportunity to gen
eralize the puzzle as a set of four identical quadrilaterals with two opposite 
right angles and the sides of one of the right angles'̂  being equal. The other two 
angles add up to 180°, because the sum of angles in a convex quadrilateral is 
equal to 360°. Thus, if one of the angles measures a, the other measures 180° -
a. If a = 90°, the piece is a square^ (Figure 6a); if a = 135° the piece is a trian
gle (Figure 6c). 

Figure 7. The three squares seen as built on the sides of a right angled triangle. 

[13] The question is: Is it at all possible to bring students to think about the Py
thagorean relation from playing with the puzzle? Is there a best-case scenario? 
Suppose the students construct the squares in Figures 2, either by themselves 
or in response to the teacher's explicitly formulated task. Suppose they even 
notice that there are three squares in these two figures and that the area of the 
external square in Figure 2b is equal to the sum of the square in Figure 2a plus 
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the area of the square built on a segment which can be seen as a certain part of 
the side of the square in 2a. Suppose, even more optimistically, that they notice 
that all three squares can then been seen as built on the sides of a right-angled 
triangle (Figure 7). 

[14] Making these observations requires that the students be highly theoretically 
oriented. It requires seeing the shapes obtained with the puzzle as structures 
composed of segments of different lengths and mutual positions. It also re
quires reflecting about the relations between the different shapes obtained with 
the puzzle (possibly in a situation where only one shape is available to the 
senses at a time). These observations are not a result of direct visual and tactile 
perception: they are a result of a construction of a geometrical model of the 
puzzle (Figure 8). 

[15] Communication of these observations among students would require coding 
the different segments of the pieces of the puzzle. Students would not know 
where their observations would be leading them, so they would be likely to use 
ad hoc representations, such as color. However, color is not functional if alge
bra is to be used later on in the representation of the Pythagorean relation and 
its proof. If the teacher imposes a notation, this will immediately destroy the 
"naturalness" of the situation. The students will know that their initiative does 
not count and this is not real exploration but the well known ritual of fake 
"discovery teaching," where students are left in the dark till they are eventually 
explicitly told what they were expected to have discovered. But suppose that 
somehow students are brought to using letters to denote lengths of segments, 
as in Figure 8. 

Figure 8. Using a diagram to compare the sides of the three squares. 

[16] The students would be probably quick to notice, but also take it for granted 
that, in the left-hand side square in Figure 8, the side of the external square is 
2z and the side of the internal square is jc - }̂ . It could also be obvious for them 
from the figure that the side of the right-hand side square is x + y. Using the 
known formula for the area of a square, the students might write the relation: 
(2z)^ = (x + yf' + (x - y)^. The students would now see in front of them a famil-
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iar mathematical object: an algebraic expression. Their aim might become to 
simplify the expression (to Iz = x^ + y^). This is what they have always done 
in such situations. 

[17] The teacher would not be satisfied with this result. Not because it is not true. It 
is, but it is also irrelevant from the point of view of his didactic goal. The rela
tion could be obtained directly from looking at the square ACED, by noticing 
that 4(xy/2 + z /̂2) = (jc + yf. Taking y = 0, it could lead to the formula for the 
diagonal of a square (2z = V2 x), which, in the curriculum, is only derived as a 
consequence of the Pythagorean theorem. 

H 

angle ACB > 90** c'̂ ^ > a^2 + b^2 

H 

angle ACB < 90* c^2 < a'''2 + b^2 

Figure 9. The failure of the Pythagorean identity c^ = a^ + b^. 

[18] At this point, the student teachers should be convinced that, in order to even 
start discussing relations among the three squares that can be obtained with the 
puzzle, students have to forget about the puzzle as a puzzle altogether. They 
should also realize that students would have to be heavily directed to focus 
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their attention on the relation between the areas of the squares without simpli
fying it any further. But even if the hypothetical teacher achieves all that, his 
students will still be extremely far from the "discovery" of the Pythagorean 
theorem. This is because, for the puzzle, the relation between the areas is al
ways true. In fact, it is quite obvious and trivial. But the Pythagorean theorem 
speaks about one very exceptional situation. The rigid wooden puzzle illus
trates this one single exceptional situation without hinting at the class of situa
tions of which it is an exception. It is, indeed, quite exceptional that the areas 
of squares built on two sides of a triangle add up to the area of the square built 
on the third. It only happens when one of the angles of the triangle is a right 
angle. The puzzle, in itself, is unable to provoke students to think about the 
conditions of the Pythagorean relationship between the areas of squares built 
on the sides of a triangle. At best it illustrates a possible way of proving the 
theorem once it is realized as a conjecture. 

[19] But the student teachers should not be left with the impression that the only 
way to introduce the Pythagorean theorem is to state it on the board and have 
the students learn it by heart. They have to understand that their students will 
not appreciate the significance of the theorem this way, either. Suppose I sug
gest that student teachers try to imagine starting a lesson by directly asking the 
theoretical question: What is the relation between the areas of squares built on 
the sides of a triangle? and allowing their students to work within a dynamic 
computer environment (Figure 9). 

The discussion would then be organized on their views of the potential of this type 
of more sophisticated "manipulatives" in the teaching of the Pythagorean theorem. 

6.2 Analysis of the thought experiment 

This section presents a possible theoretical reflection of a researcher on the role of 
theoretical thinking in the work of a teacher educator planning a teaching activity 
with student teachers. The analysis will make references to the narrative of the hypo
thetical educator in the form of paragraph numbers in square brackets. It will also 
make explicit the evaluation, as theoretical (t) or practical (p), of the narrator's 
thinking about the practices of research (R), teacher education (E), teaching (T), 
learning (L), doing mathematics (M). The analysis highlights in italics words that 
are related to particular features of theoretical thinking. 

In [1] the researcher engages in hypothetical thinking ("suppose") about the ac
tion of a teacher educator, so his relationship with E is theoretical (tE). The choice 
of the topic, however, is based on his experience with E; he knows that manipula-
tives is a "hot issue" and is likely to attract student teachers' attention (pE). He also 
knows that this is a controversial issue in mathematics education (pR) and has a the
ory about the epistemological relationship between manipulatives and mathematics 
(tM). This theory re-surfaces now and again in his reflection ([4], [7], [8], [10], [13], 
[14], [18]). 

In [2] it is the hypothetical teacher educator who speaks. His consciously 
adopted methodology of preparing a class (tT) is to first "prepare for the worst" and 
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then gradually consider more optimistic scenarios. His worst-case scenario is based 
on the assumption, founded on his experience with teaching (pT), that his actual stu
dent teachers as well as hypothetical teachers and pupils have a strongly practical 
attitude towards their tasks. He considers this to be the worst-case scenario, because 
he assumes that mathematics is theoretical knowledge par excellence (tM). 

In [3] the educator decides against just telling the student teachers that the use of 
manipulatives can be more or less effective depending on circumstances. Following 
perhaps a "socio-constructivist approach" (tT), he plans to confront his student 
teachers with a specially designed situation, let them draw the conclusions for them
selves, and then engage in an argument with them, negotiating alternative ways of 
thinking. This operationalization of the socio-constructivist epistemology in terms of 
didactic choices is based on his familiarity with its common interpretations within 
the community of teacher educators to which he belongs (pE). He chooses to use a 
wooden puzzle as an example of a manipulative, because it is there on his desk, re
minding him of his recent activities with children of various ages playing with the 
puzzle (pT). 

In [5] the educator reflects on (tM) his personal experience with the puzzle; he 
has played with the puzzle, trying to make mathematically meaningful shapes (pM). 
Based on this experience, he assumes, in [6], that knowing the Pythagorean theorem 
allows one to construct a material model of the idea of the proof of the theorem with 
the puzzle (pM, tM). 

In [7] the educator reasons as follows: Since the student-teachers know the Py
thagorean theorem, and, according to the worst-case scenario, they hold the naive 
belief that mathematical patterns are there in nature and things (tL), waiting to be 
discovered, it is very likely that they will expect high school students to "discover" 
the theorem through playing with the puzzle (tT). 

In [8] the educator reflects on the possible moves (tT) in this situation, based on 
his experience as a teacher (pT). The best thing would be to ask the student teachers 
to actually perform an experiment with a student who has never seen the Pythagoras 
theorem before. But the constraints of time as well as the practical difficulties of ac
cess to such students and of the control of the experiment by the teacher educator 
make him opt for a collective "thought experiment" instead. 

In the sequel of the thought experiment ([9]-[18]), the teacher educator specu
lates about how his students could be led to the realization of the non-transparency 
of manipulatives by imagining what could happen in a classroom started by a free 
play with the puzzle. 

The educator imagines the course of events based, again, on his methodology of 
going from the worst-case scenario to gradually more optimistic scenarios regarding 
the agents' theoretical thinking (tT, [9], [10]). His speculations are founded on his 
informal observations of students playing with the puzzle (pT, tL, [9], [10]), his the
ory of people's relationship to cultural artifacts (tL, [9], [10]), and his reflection on 
his experience of mathematizing the relationships between the elements of the puz
zle (pM, tM, [10], [11], [12]). 

In [12] he reflects on the outcome of these speculations (tT); he considers a tech
nical approach to the puzzle as quite natural in students. On the other hand, thinking 
about the Pythagorean relation in the context of the puzzle does not appear as natu-
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ral; based on his reflection on his activity of relating the puzzle configurations with 
the Pythagorean relation, he realizes that this would require noticing unobvious 
quantitative relations and highly theoretical thinking (pM, tM, [13], [14]). This 
would also require a graphical representation of two special configurations of the 
puzzle and a mathematically consistent coding of the elements of the puzzle (pM, 
tM, [15]). 

Para 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Sum: 

tR pR 

1 

0 1 

il- pF 

t^"-. i 1 1 

I'i" Pl 

Tl^^^H 

1 2 

^ 
1 

— r 
i 

1 ' 

LJJ 
11 5 

iL PV 

= 

S^^Jm 

I 

1 

1 

7 0 

,M pM 

LJ 
r 1 • 

1 ' ̂  
^ ^ ^ H 

• 
I 

0 

* 

u^^ 

20 

1 

1 1 
1 

1 

1 

L 

i 1 
9 

Figure 10. A summary of the interplay of theoretical and practical thinking in the course 
of the educator's work of preparing his classroom activity. Theoretical thinking was invested 
mostly into the educator's relationship with the practice of doing mathematics and the prac
tice of teaching. This thinking was strongly supported by the educator's experiences in these 

domains of practice. His thinking about learning was more speculative. 

These reflections lead the educator to point to the shaky foundations of the so-called 
"discovery learning" (tL, [15]). Through [16]-[18] he demonstrates (tT, tL, tM) how 
unrealistic it is to expect that the puzzle will "naturally" lead students to thinking 
about the Pythagorean theorem, in all these scenarios, not only in the worst case 
scenario, based on a reflection on his own mathematization of the puzzle. He shows 
that even if students are highly theoretically minded, the puzzle cannot bring them to 
thinking about the Pythagorean theorem, if they hadn't seen it before, because the 
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theorem points to the conditions of existence of a puzzle such as the given one. This 
existence is not put into question in the puzzle; the puzzle is a fact. 

The educator eventually goes back to thinking about the possible reactions of his 
student teachers to the realization of the epistemological impossibility of obtaining 
the Pythagorean theorem through even theoretical modeling of the puzzle. Based, 
again, on his methodology of worst-case scenario, he prepares to counter the prob
able student teachers' conclusion that "manipulatives are bad" with a proposal of an 
alternative representation (tT, pM, tM, [19]). 

Figure 10 contains a summary of the above analysis of the educator's engage
ment with the different domains of practice. 

A striking overall characteristic of the teacher educator's thinking is the lack of 
one coherent theoretical framework or conceptual system, on which his planning 
would be based. The educator makes decisions based on bits of various "theories," 
while being strongly influenced by his own experience and practice of teaching, 
learning and doing mathematics. His relationship to the different objects of his re
flection can be regarded as locally, but not globally theoretical. He makes conscious 
use of a methodology, but does not reflect on its validity. He does not verify for con
tradictions among his conclusions drawn at different points in his planning. His aim 
is to produce a rich learning experience for his student teachers, not to construct a 
theory of the use of manipulatives in the teaching of mathematics. 

The next section contains a theoretical reflection of the researcher on the results 
of this thought experiment and, more generally, on research in mathematics educa
tion (tR). 

7. CONCLUSION 

It was not too difficult to write a characterization of theoretical as opposed to practi
cal thinking. Innumerable philosophers did that, at least from the time of Aristotle. It 
was much harder to use this distinction in speaking about a concrete instance of 
thinking about teaching, learning and doing mathematics. One reason for this diffi
culty is the complementarity of the categories of practical and theoretical thinking. 
Both are related to action, one engaged with action from within, the other - from 
without. This is a subtle difference and it is easy for the researcher to mistake one 
for the other. 

At any given moment, the thinking subject is involved in a practical relationship 
with an action, planning what to do next. But any decision that is being made in the 
course of this action depends on a consideration, however swift, of the hypothetical 
possibilities and the choice of one. The choice may be based on various degrees of 
theoretical analysis and construction. It is not possible to reliably judge such mo
mentary choices as based or not on theoretical thinking - and this is another source 
of the difficulty. One can only speak of the presence of perhaps some features of this 
kind of thinking and one can never be sure if this short instance of thinking was 
done with some global and conscious intention of theory construction. "Intention" 
and especially "conscious intention" are categories that have caused enough prob-
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lems in philosophy and psychology; it is very difficult to operationalize them in re
search. 

Another reason of the difficulty is the complexity of what goes on in people's 
minds. Thinking takes place simultaneously at several planes of action, which can be 
considered separately only in theory, and even then, hypothesizing about the think
ing at all of these planes in a subject at a given moment of an observation or inter
view may easily overwhelm even the most assiduous of researchers. This complex
ity cannot be ignored in mathematics education research, because its object is ex
actly the interplay of thinking at several levels of action at once. The construction of 
a coherent theoretical framework for the object of research in mathematics education 
is, therefore, an extremely challenging task (but not an impossible task; see, e. g. 
Brousseau 1996; Chevallard 1999). 

It is not surprising, therefore, that so many researchers in mathematics education 
tend to reduce the complexity in their work, and either use eclectic approaches or 
focus on some chosen planes of action. Certainly cognitive and socio-cognitive is
sues, and philosophical questions related to the nature of mathematics have attracted 
much attention. 

One is often tempted to deplore this state of affairs. However, as in the thought 
experiment described in this paper, the crucial argument in analyzing a teaching pro
ject is often found not by applying the most general and sophisticated theoretical 
framework, but by looking at the best-case scenario. Of course, if students are not 
interested or not intellectually mature for a topic, and the teacher makes pedagogical 
mistakes, the project will fail. But suppose students are capable and willing to think 
theoretically about mathematics, and the teacher is "good" according to the stan
dards of some accepted instructional theory. If a teaching approach does not fulfill 
the expectations in this situation, the reason is not in the pedagogy but in the episte-
mology of the subject matter. Epistemological analyses of the mathematical ideas 
are, therefore, the foundation of any teaching project in mathematics education. This 
is why the work of philosophers such as Michael Otte is so important for our do
main. 

Concordia University, Montreal 

NOTES 

^ The pronoun "he" is used throughout the paper as a generic pronoun, not as this author's political state
ment. 
^ Regional conference of the National Council of Teachers of Mathematics, Montreal, Canada, August 
2002. 
^ These shapes were the first three produced by a 6:9 years old girl after she was given the puzzle and 
asked to "make some shapes with it." Asked why she made the first shape just so, she answered, "because 
it fitted with those triangles. And it also looks a bit like a flower, Uke those you get in a computer." The 
second shape was described as "it looks like a funny cat;" about the third she said, "it's a butterfly that's 
acting weird." Two grade seven students, asked to play with the puzzle, spontaneously constructed simi
lar shapes. They were mainly interested in verifying how the parts of the pieces fitted with each other; e. 
g., if it was possible to make a straight line with two of them. These students were able to construct the 
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two squares in approximately 10 minutes. One of them believed that the inner square (in Figure 2b) is of 
equal size with the full square (in Figure 2a). 
"̂  Here, the meaning of the word "angle" may be based on an intuitive/visual idea of "comer." 
^ At this point, "square" means a quadrilateral with 4 right angles and equal sides, not a visually grasped 
regular shape. 
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